Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the popularity of machine learning growing in the field of catalysis there are increasing numbers of catalyst databases becoming available. These databases provide us with the opportunity to search for catalysts with desired properties, which could lead to the discovery of new catalysts. However, while there are search methods for molecules based on similarity metrics, for solid-state catalyst systems there is not yet a straightforward search method. In this work, we propose a neural network embeddings based similarity search method that is applicable for both molecules and solid-state catalyst systems. We illustrate how the search method works and show search examples for the QM9, Materials Project (MP) and Open Catalyst 2020 (OC20) databases. We show that the configurations found present similarity in terms of geometry, composition, energy and in the electronic density of states. These results imply the neural network embeddings have encoded effective information that could be used to retrieve molecules and materials with similar properties.more » « less
-
Abstract The degree of rate control (DRC) quantitatively identifies the kinetically relevant (sometimes known as rate‐limiting) steps of a complex reaction network. This concept relies on derivatives which are commonly implemented numerically, for example, with finite differences (FDs). Numerical derivatives are tedious to implement, and can be problematic, and unstable or unreliable. In this study, we demonstrate the use of automatic differentiation (AD) in the evaluation of the DRC. AD libraries are increasingly available through modern machine learning frameworks. Compared with the FDs, AD provides solutions with higher accuracy with lower computational cost. We demonstrate applications in steady‐state and transient kinetics. Furthermore, we illustrate a hybrid local‐global sensitivity analysis method, the distributed evaluation of local sensitivity analysis, to assess the importance of kinetic parameters over an uncertain space. This method also benefits from AD to obtain high‐quality results efficiently.more » « less
An official website of the United States government

Full Text Available